Fachrul Hidayat: Hydropower
News Update
Loading...
Showing posts with label Hydropower. Show all posts
Showing posts with label Hydropower. Show all posts

Sunday 15 September 2019

Parameter Menentukan Ketebalan Pipa Menurut ASME B31.1 – Power Piping

Salah satu bagian yang krusial dalam desain sistem perpipaan atau piping, adalah menentukan ketebalan pipa. Desain yang kita buat, selain harus aman, juga harus sesuai dengan standard dan code yang telah ditentukan secara internasional. Untuk Piping sendiri, di Indonesia umumnya menggunakan standard ASME sebagai pedoman  desain. Ada dua standard ASME yang memuat tentang desain Piping, yakni ASME B31.1 dan ASME B31.3. Perbedaan dan aplikasi kedua standard tersebut akan saya bagikan di tulisan yang lain.


Kali ini saya ingin menguraikan parameter untuk penentuan ketebalan pipa menurut ASME B31.1.
 

ASME B31.1 yang saya gunakan disini adalah ASME B31.1 Power Piping tahun 2016, hasil revisi dari tahun 2014. Persamaan utama untuk menentukan ketebalan pipa dapat ditemukan dalam Para 104  bagian Pressure Design of Components. Di bagian ini, penentuan ketebalan pipa pun dibagi berdasarkan bentuk dan perlakuan pada pipa itu sendiri. Kita akan mengambil bagian yang banyak digunakan, yaitu Straight Pipe Under Internal Pressure, artinya pipa lurus yang mendapatkan tekanan dari dalam. Bagian ini ada di Para 104.1.2 halaman 21.

Baca Juga:

Pada Para tersebut, untuk menentukan ketebalan pipa menggunakan persamaan berikut:



Dimana:
tm = Minimum required wall thickness
P = Internal design pressure
Do = Outside diameter of pipe
p = Inside diameter of pipe
SE = Maximum allowable stress in material

A = Additional thickness
y = Coefficient having values

Mari kita uraikan satu persatu parameter diatas.

Minimum Required Wall Thickness - tm

Ini adalah ketebalan pipa yang akan kita tentukan melalui perhitungan.

Internal Design Pressure - P 

Ini adalah tekanan kerja dari dalam pipa yang kita tentukan dalam desain. Besarnya tentu sesuai dengan tekanan yang sudah tersedia dan akan kita buat sistem piping nya.

Outside dan Inside Diameter - Do & p

Ini adalah diameter luar dan diameter dalam pipa yang akan kita gunakan. Diatas terdapat dua persamaan, dan pemakaiannya tergantung pada apa yang kita tetapkan pertama kali. Jika kita menetapkan diameter luar, berarti diamater dalam akan mengikut, sesuai tebal pipa yang kita dapatkan di akhir perhitungan. Jika kita menetapkan diameter dalam, berarti diameter luar yang akan mengikut.

Maximum Allowable Stress in Material - SE

Ini adalah tegangan maksimum yang diizinkan pada material pipa yang kita gunakan.  Untuk mendapatkan nilai ini, kita tinggal melihat pada bagian Appendix A. Misalkan material pipa yang kita gunakan adala Carbon Steel A106 Grade B pada temperatur maksimal 200 derajat Fahrenheit, maka nilainya adalah 17,1 dalam satuan Ksi sesuai tabel berikut.

 

Additional Thickness - A

Ini adalah angka tambahan ketebalan pipa untuk kompensasi akibat pekerjaan mekanis, seperti threading dan grooving, pengelasan, sampai korosi. Lebih jelasnya bisa dilihat di Para 102.4. Adapun nilai ini kita tentukan masing-masing menyesuaikan dengan kondisi dan pekerjaan piping yang kita desain.

Baca juga:  

Coefficient Having Values - y

Ini adalah nilai berdasarkan karakteristik material. Dalam ASME B31.1, nilainya diberikan dalam Tabel 104.1.2(A). Misalkan karakter material pipa kita adalah Austenitic Steel pada temperatur desain dibawah 482 derajat celcius, maka nilainya adalah 0,4 seperti tabel berikut.

Nah, setelah mengetahui parameter-parameter diatas, maka kita dengan mudah bisa menghitung dan menentukan ketebalan pipa yang aman dan sesuai standard. Satu hal yang selalu perlu diperhatikan dalam perhitungan seperti ini adalah kesamaan satuan. Pastikan kita menggunakan satuan yang sesuai dan setara untuk tiap parameter. Jika ada yang tidak sesuai, maka konversilah dulu. Saya beberapa kali mendapatkan hasil hitung yang tidak masuk akal akibat salah menentukan satuan. Hehe

Wednesday 11 September 2019

Inilah Habibie Factor, Penemuan BJ Habibie yang Mengubah Dunia

Sore ini, 11 September 2019, Indonesia berduka. Bapak Prof. DR (HC). Ing. Dr. Sc. Mult. Bacharuddin Jusuf Habibie, menghembuskan nafas terakhir pada pukul 18.03 WIB, di RSPAD Gatot Subroto, Jakarta.

Via: perpusnas.go.id

Saya mengagumi Bapak Habibie bukan hanya karena beliau adalah presiden yang menyelamatkan bangsa dari krisis demokrasi tahun 1998, melainkan karena bagi saya, beliau adalah Insinyur paling hebat yang pernah dilahirkan dalam sejarah Republik Indonesia.

Pernahkah anda mendengar Hukum Newton? Pernah dengar Persamaan Bernoulli? Atau Hukum Archimedes? Pasti anda yang pernah belajar di bangku sekolah, setidaknya tak begitu asing dengan istilah yang ditemukan oleh para ilmuwan dunia diatas. Namun apakah anda pernah mendengar Habibie Factor?

Problematika Penerbangan Dunia

 
Pernahkah anda memperhatikan sayap pesawat saat sedang mengudara? Sepintas sayap tersebut terlihat padat dan mulus.
Tapi, apakah anda tahu kalau bagian dalam dari struktur rangka sayap pesawat ini berongga-rongga?



Struktur rangka pesawat berada pada bagian dalam yang tertutup rapat. Bagian inilah yang menahan beban tekanan yang sangat besar dan terus-menerus selama penerbangan.
Pernahkah anda perhatikan saat sedang terbang dalam cuaca buruk dan terjadi turbulensi, sayap pesawat ini sampai berayun-ayun?

Dalam ilmu teknik, dikenal istilah fatigue, alias kelelahan material. Fatigue adalah melemahnya kekuatan suatu material yang disebabkan oleh beban terus-menerus yang diterima oleh material tersebut.


Baca juga: Engineering Adalah

Pada kasus rangka pesawat tadi, peristiwa fatigue ini adalah permasalahan yang pelik. Titik yang rawan fatigue pada sebuah pesawat adalah pada sambungan antara sayap dan badan pesawat, atau antara sayap dan dudukan mesin, karena bagian inilah yang mengalami guncangan paling keras terutama saat pesawat lepas landas, turbulensi, atau saat mendarat. Saat fatigue terjadi, ia memicu munculnya crack atau retakan pada material struktur rangka sayap.


Via: code-aster

Crack biasanya bermula pada ukuran 5 mikrometer. Sangat kecil, tapi terus merambat. Semakin hari kian memanjang dan bercabang-cabang pada material. Kalau crack ini tidak terdeteksi, taruhannya mahal. Sayap pesawat bisa patah kapan saja.

Pada tahun 1960-an permasalahan fatigue sangat sulit dideteksi. Belum ada pemindai sensor laser yang didukung teknologi komputer untuk menentukan titik crack. Puluhan tahun masalah ini terus menghantui dunia penerbangan. Bagaimana tidak, mereka tidak pernah tahu apakah sudah ada kerusakan pada struktur pesawat atau tidak. Akibatnya, pada masa itu kecelakaan pesawat cukup sering terjadi.

Dunia Mencari Solusi

 
Para Insinyur penerbangan terus mencari jalan keluar. Mereka mencoba mengatasi masalah crack ini dengan meningkatkan safety factor.

Bagaimana caranya meningkatkan safety factor?



Dalam ilmu teknik, safety factor adalah faktor tambahan dalam suatu hitungan perencanaan dengan tujuan untuk menambah kemanan dari perencanaan tersebut. Nah, cara yang dipakai para Insinyur penerbangan saat itu adalah meningkatkan safety factor ini sehingga bobot konstruksi struktur rangka pesawat menjadi sangat jauh melebihi kebutuhan. 

Konsekuensinya, akibat konstruksi struktur bertambah, otomatis membuat pesawat jadi jauh lebih berat. Kalau pesawat lebih berat tentu saja akan lebih lambat, susah bermanuver, dan menjadi lebih banyak mengkonsumsi bahan bakar.

Tentu akan sangat merepotkan.


Pada masa itu para Insinyur penerbangan di seluruh dunia dalam keadaan deadlock, tidak punya solusi. Masalah ini begitu sulit diselesaikan.


Baca juga: Mengapa Mahasiswa Teknik Harus Menonton Film 3 Idiots?

Insinyur Habibie

 
Pada masa tanpa solusi saat itu, Habibie, seorang Insinyur dari Indonesia, hadir membawa jalan keluar. Di usianya yang saat itu baru menginjak 32 tahun, beliau berhasil menjabarkan sebuah perhitungan yang sangat akurat dan detail untuk mendeteksi letak titik awal crack pada material struktur rangka pesawat.

Dunia terbelalak. Ini adalah penemuan yang besar dalam dunia penerbangan.

Dengan perhitungan dari Habibie, perencanaan struktur rangka sayap pesawat menjadi jauh lebih meyakinkan. Selain itu, berat pesawat dapat berkurang hingga 10% sehingga biaya produksi lebih ekonomis, pesawat lebih mudah bermanuver, hemat bahan bakar, dan menjadi mudah dalam perawatan.



Perhitungan Habibie ini dikenal dengan Crack Propagation Theory dan menjadi lebih populer di dunia penerbangan dengan istilah Habibie Factor. Sampai saat ini, selain Habibie Factor, Habibie memegang 46 hak paten untuk penemuan-penemuan beliau  dalam bidang pesawat terbang. Teori-teorinya banyak digunakan dalam industri penerbangan di seluruh penjuru dunia.

Selamat jalan, Bapak Habibie, kebanggaan Indonesia.
Entah perlu berapa generasi lagi bagi bangsa ini untuk bisa melahirkan seorang Insinyur sehebat beliau.


Sunday 8 September 2019

Engineering Adalah

engineering adalah

Setiap saya bepergian dengan pesawat, pada saat check in saya selalu meminta sebisa mungkin duduk di seat yang dekat jendela. Selain untuk menikmati pemandangan, saya juga senang mengambil foto sayap pesawat. Pernah ada teman yang menyebut saya fotografer sayap pesawat. Hehe. Itu karena saking banyaknya foto-foto sayap pesawat didalam galeri handphone saya.

engineering adalah

Pernahkah kalian membayangkan bagaimana pesawat bisa terbang?
Pesawat terbuat dari bahan logam sebagai struktur rangka utama yang tentunya cukup berat. Pesawat Boeing 737 MAX-8 yang beberapa bulan yang lalu viral didunia maya, beratnya sekitar 82 ton.


82 ton itu seberat apa?
82 ton setara dengan 82.000 kilogram. Jika timbangan badan rata-rata manusia adalah 50 kilogram, maka 82 ton sama dengan berat 1640 orang. Berat kan? Bagaimana bisa benda seberat itu mampu terbang menari-nari di udara dan tidak jatuh?


engineering adalah

Pesawat adalah contoh yang paling mudah untuk menunjukkan representasi dunia engineering. Memang betul bahwa ilmu dasar dalam penemuan pesawat adalah persamaan hukum Bernoulli yang ditemukan oleh Daniel Bernoulli yang adalah seorang ahli matematika dan fisika. Namun jika bukan karena Orville Wright dan saudaranya Wilbur Wright yang menerapkan ilmu tersebut pada rancangan pesawat mereka, maka hukum Bernoulli akan selamanya hanya ada di buku dan dihafalkan dari masa ke masa.


Baca juga: 
Dahulu waktu saya kuliah, salah satu dosen idola saya di Unhas yang membawakan kuliah Mekanika Fluida, bapak Nasaruddin Salam, sering menyampaikan kalimat begini: "Pekerjaan engineering itu sederhana, kita mengubah mimpi menjadi kenyataan!"

Agak hiperbola namun memang demikianlah adanya. Dulu orang memimpikan bepergian antar negara dengan cepat dan mudah, engineering menciptakan pesawat. Dulu orang memimpikan bisa tetap terang walau saat malam hari, engineering menciptakan listrik. Dahulu orang memimpikan bisa berbicara dengan kerabat di tempat yang jauh, engineering menciptakan jaringan handphone.


engineering adalah

Engineering adalah menerapkan ilmu sains dan matematika untuk menyelesaikan permasalahan peradaban. Pelaku engineering disebut engineer, dan di Indonesia lebih populer dengan istilah insinyur. Para engineer memikirkan bagaimana berbagai ilmu sains dan matematika dapat diterapkan untuk memudahkan kehidupan manusia. Para ilmuwan sains sering mendapatkan pujian atas penemuan ilmu yang mereka hasilkan, tetapi para engineer lah yang berperan dalam membuat penemuan itu bermanfaat bagi dunia. Bagi saya sendiri, ilmu sains tanpa engineering hanyalah dongeng. 


Baca juga:  
Engineering adalah bagian tak terpisahkan dari sejarah peradaban manusia. Piramida Giza, Stonehenge, Parthenon, dan Menara Eiffel yang masih berdiri hari ini adalah beberapa monumen warisan para engineer pada jamannya. Saat ini pekerjaan engineering tersebar di berbagai bidang kehidupan seiring dengan makin kompleksnya permasalahan dan tantangan jaman. Para engineer tidak hanya dibutuhkan untuk membuat pesawat atau merancang bangunan yang monumental, namun juga dalam industri energi, pertambangan, otomotif, perminyakan, listrik, pelayaran, komputer, sampai perangkat lunak.

engineering adalah

Engineering tak lepas dari kehidupan kita sehari-hari. Apa saja yang yang bisa memudahkan atau menyelesaikan masalah dalam keseharian kita, adalah ilmu engineering. Dari bangun pagi, kita menyalakan lampu. Berangkat ke kantor naik motor, motor diisi bahan bakar bensin hasil tambang minyak bumi, di kantor mengetik di komputer sambil menyalakan AC. Oh iya, tadi ke kantor lewat jalan raya dan jembatan layang. Akhir pekan pulang kampung naik kereta api. Semua fasilitas diatas adalah karya engineering.
Lalu  bagaimana bangunan kantor kita yang tinggi bisa kokoh dan tak rubuh diterpa angin? Bagaimana bisa ada lift untuk kita naik turun lantai tanpa perlu repot-repot naik tangga? 
Di belakang hal-hal keren tersebut ada seorang engineer yang merancangnya.

Bagaimana, sudah terbayang sesuram apa dunia ini tanpa kiprah para engineer?

Kabar sedihnya, tingkat ketersediaan engineer yang kompeten di dunia makin tak berimbang dengan kebutuhan industri. Di Indonesia sendiri, menurut riset lembaga Persatuan Insinyur Indonesia (PII), kita masih kekurangan sekitar 280 ribu engineer dalam kurun waktu 5 tahun kedepan. Saya sendiri tak mengerti bagaimana ini bisa terjadi.

Baca juga: 
Engineering adalah kebutuhan hidup kita. Untuk itu saya berharap bahwa menjadi seorang engineer atau insinyur akan selalu menjadi salah satu pilihan cita-cita bagi generasi muda kita. Jangan semuanya mau jadi yutuber !

Thursday 5 September 2019

Sumber Cooling Water PLTA dari Penstock, Efektif kah?

Hydropower Plant adalah salah satu metode untuk menghasilkan energi listrik dengan memanfaatkan potensi tenaga air. Di Indonesia, metode ini lebih dikenal dengan nama Pusat Listrik Tenaga Air (PLTA). PLTA mengandalkan ketinggian jatuh air (head) dan jumlah aliran air (debit) untuk menggerakkan sudu-sudu Turbin dan memutar Generator sehingga menghasilkan listrik.

Selain Turbin dan Generator sebagai komponen utama, PLTA terdiri dari beberapa sistem mekanis luar yang mendukung kinerja Turbin dan Generator. Sistem tersebut dalam PLTA dikenal dengan istilah Mechanical Balance of Plant (MBOP) Sistem. MBOP ini menyuplai kebutuhan Turbin dan Generator seperti Lubricating Oil, Cooling Water, Fire Hydrant, Oil Mist Collector, dll.


Cooling Water System atau air pendingin adalah salah satu bagian yang krusial pada PLTA. Sistem ini yang menyediakan air pendingin pada bagian-bagian Turbin dan Generator sesuai tekanan dan debit tertentu melalui jaringan pipa. Untuk mencapai kinerja Cooling Water yang efektif, salah satu hal yang perlu dipertimbangkan dalam perecanaannya adalah sumber Cooling Water itu sendiri.

Suplai Cooling Water harus tersedia pada saat Turbin PLTA beroperasi. Air tersebut bisa didapatkan dari beberapa sumber yaitu:
a.   Dialirkan dari Head Tank
b.   Dipompa dari Tailrace
c.    Diambil dari Turbin Cover
d.   Disambung dari Penstock
Tulisan ini akan mengulas salah satu sumber Cooling Water yang banyak digunakan PLTA, yaitu dari Penstock.

Sumber Cooling Water dari Penstock
Mengambil Cooling Water dari Penstock adalah metode yang paling banyak digunakan, dan ini adalah sumber Cooling Water terbaik untuk PLTA head menengah. Kita cukup menyambungkan pipa ke Penstock yang terdekat dan mengalirkan ke sistem Turbin yang membutuhkan Cooling Water


Keunggulan cara ini adalah jalur sistem perpipaan yang pendek, dan ketersediaan tekanan yang stabil. Namun untuk PLTA head menengah keatas, menggunakan cara ini harus melalui perhitungan yang baik. Umumnya tekanan Penstock lebih besar dari tekanan kebutuhan Cooling Water. Untuk itu dibutuhkan Pressure Reducing Valve (PRV). Menggunakan PRV pada head tinggi dapat menyebabkan kavitasi pada air dan memicu terjadinya korosi pada komponen tersebut, terlebih jika kandungan airnya kotor. Kavitasi juga menimbulkan bunyi dan getaran disekitar PRV yang dapat merusak komponen lain dalam sistem perpipaan. Untuk mengurangi kavitasi, beberapa cara dapat dilakukan:

a.   Memilih PRV yang sesuai dengan kondisi aliran dan dilengkapi dengan sistem anti kavitasi;
b.   Menggunakan PRV secara bertingkat pada satu jalur, agar penurunan tekanan terjadi secara perlahan-lahan;

Perlu dipertimbangkan pula kemampuan PRV untuk menahan tekanan Water Hammer Penstock yang jauh lebih besar dari tekanan normal. Dari aspek aliran dalam pipa tidak ada potensi masalah yang berarti. Hanya perlu diperhatikan bahwa kecepatan aliran didalam Pentock harus dipastikan tidak menciptakan tekanan air yang lebih rendah dari tekanan dimana outlet pipa Cooling Water ini tersambung. Tekanan yang demikian malah dapat menyebabkan aliran balik ke dalam Penstock. Pada beberapa perhitungan dan simulasi software yang saya lakukan, dengan perbandingan diameter Penstock & pipa Cooling Water yakni 4100 mm : 273 mm, maka didapatkan bahwa kecepatan aliran dalam penstock tak boleh lebih dari 15 m/s. Pada kecepatan 15 m/s tekanan air didalam Penstock akan lebih rendah dari tekanan outlet Cooling Water dan akan menyebabkan arah aliraan berubah. Kondisi seperti ini tentu sangat sulit terjadi mengingat bahwa Turbin telah menetapkan dibit air yang tertentu sehingga kecepatan aliran akan terkontrol dari bukaan Turbine Guide Vane.

Pertimbangan lain dari penggunaan cara ini yaitu bahwa air yang keluar dari penstock adalah air yang mengurangi daya Turbin, meskipun angkanya sangat kecil. Misalkan, sebuah PLTA pada head 100 m dengan daya yang dibangkitkan 100 MW, membutuhkan Cooling Water sekitar 150 l/s. Air sejumlah tersebut mengurangi daya sekitar 130 kW dari daya yang seharusnya dibangkitkan.


Beberapa PLTA yang mengambil suplai Cooling Water dari Penstock sbb:
a.   Vidraru HPP di Romania, head 290 m, flow rate 22,5 m3/s, 4x55 MW.
Cooling Water di Vidraru HPP dialirkan dari water tank yang diletakkan di lantai selevel machine hall (Groud Floor). Water tank tersebut diisi dari Tailrace melalui sistem pompa yang sekaligus menjadi suplai utama Cooling Water. Sebagai back up, water tank bisa diisi dari penstock dengan menggunakan 4 pipa paralel yang masing-masing melalui PRV. Kapasitas PRV adalah 0,1 m3/s, maksimum inlet pressure 40 bar dan outlet pressure 5,5 bar.

 Source: researchgate.net

b.    Middle Marsyangdi HPP di Nepal, 2x35 MW
Suplai Cooling Water Utama diambil langsung dari Penstock, dialirkan ke Turbin setelah melalui Heat Exchanger. Sebagai back up, suplai bisa diambil dari Turbine Draft Tube melalui 2 unit pompa.

Source: globaljournals.org

c.    PLTA Sutami, Brantas, Indonesia
Menggunakan water tank sebagai penampungan, suplai air untuk water tank diperoleh dari penstock. Tekanan inlet 9 bar dan tekanan outlet 6 bar setelah melalui PRV.

Sumber Cooling Water dari Penstock adalah cara yang paling banyak dipakai pada PLTA di seluruh dunia, terutama untuk head menengah, baik sebagai suplai utama maupun sebagai back up. Menggunakan cara ini pada head tinggi pun tidak masalah asal diperhatikan tentang pemilihan PRV yang sesuai dari aspek ukuran, kapasitas, tingkat kavitasi, serta tentunya nilai ekonomis. Sebaiknya dibuat jalur by pass yang juga dilengkapi dengan PRV agar sistem tetap dapat bekerja jika ada maintenance PRV pada jalur utama. Pemilihan sumber Cooling Water yang baik sangat menentukan performa Turbin dan Generator pada PLTA.

Featured

[Featured][recentbylabel2]

Featured

[Featured][recentbylabel2]
Notification
Apa isi Blog ini? Catatan perjalanan, opini, dan esai ringan seputar Engineering.
Done